A spectral fictitious domain method with internal forcing for solving elliptic PDEs
نویسندگان
چکیده
A fictitious domain method is presented for solving elliptic partial differential equations using Galerkin spectral approximation. The fictitious domain approach consists in immersing the original domain into a larger and geometrically simpler one in order to avoid the use of boundary fitted or unstructured meshes. In the present study, boundary constraints are enforced using Lagrange multipliers and the novel aspect is that the Lagrange multipliers are associated with smooth forcing functions, compactly supported inside the fictitious domain. This allows the accuracy of the spectral method to be preserved, unlike the classical discrete Lagrange multipliers method, in which the forcing is defined on the boundaries. In order to have a robust and efficient method, equations for the Lagrange multipliers are solved directly with an influence matrix technique. Using a Fourier-Chebyshev Petrov-Galerkin approximation, the high-order accuracy of the method is demonstrated on oneand two-dimensional elliptic problems of secondand fourth-order. The principle of the method is general and can be applied to solve elliptic problems using any high order variational approximation.
منابع مشابه
Parallel Fictitious Domain Method for a Nonlinear Elliptic Neumann Boundary Value Problem Parallel Fictitious Domain Method for a Nonlinear Elliptic Neumann Boundary Value Problem
Parallelization of the algebraic ctitious domain method is considered for solving Neumann boundary value problems with variable coeecients. The resulting method is applied to the parallel solution of the subsonic full potential ow problem which is linearized by the Newton method. Good scalability of the method is demonstrated in Cray T3E distributed memory parallel computer using MPI in communi...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملSemi-Smooth Newton Method for Solving Unilateral Problems in Fictitious Domain Formulations
This contribution deals with the numerical solution of elliptic boundary value problems with unilateral boundary conditions using a fictitious domain method. Any fictitious domain formulation [2] extends the original problem defined in a domain ω to a new (fictitious) domain Ω with a simple geometry (e.g. a box) which contains ω. The main advantage consists in possibility to use a uniform mesh ...
متن کاملEfficient Chebyshev Spectral Method for Solving Linear Elliptic PDEs Using Quasi-Inverse Technique
We present a systematic and efficient Chebyshev spectral method using quasiinverse technique to directly solve the second order equation with the homogeneous Robin boundary conditions and the fourth order equation with the first and second boundary conditions. The key to the efficiency of the method is to multiply quasiinverse matrix on both sides of discrete systems, which leads to band struct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011